Given to solve,
`lim_(x->oo) x^3/(x+2)`
as `x->oo` then the `x^3/(x+2) =oo/oo` form
so upon applying the L 'Hopital rule we get the solution as follows,
If
`lim_(x->a) f(x)/g(x) = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get the solution with the below form.
`lim_(x->a) (f'(x))/(g'(x))`
so , now evaluating
`lim_(x->oo) x^3/(x+2)`
= `lim_(x->oo) ((x^3)')/((x+2)')`
= `lim_(x->oo) (3x^2)/(1)`
by plugging the value `x=oo` , we get
=` 3(oo)^2`
= `oo`
Comments
Post a Comment