`lim_(x->oo) (int_1^x ln(e^(4t-1)) dt )/ x` Evaluate the limit, using L’Hôpital’s Rule if necessary.
`lim_(x->oo) (int_1^x ln(e^(4t-1)) dt )/ x`
= `lim_(x->oo) (int_1^x (4t-1) dt )/ x`
= `lim_(x->oo) ( [4(t^2)/2-t]_1^x )/ x`
= `lim_(x->oo) ( [2x^2 -x]-[2(1^2)-1] )/ x`
= ` lim_(x->oo) ( [2x^2 -x]-[2-1] ) /x`
= `lim_(x->oo) ( [2x^2 -x-1 ]) /x`
= `lim_(x->oo) [2x -1-1/x ]`
upon plugging the value of `x = oo` , then we get
`lim_(x->oo) [2x -1-1/x ]`
= `[2(oo) -1-1/(oo) ]`
= `2(oo) -1 -0`
= ` oo`
Comments
Post a Comment