`sum_(n=0)^oo(1/2^n-1/3^n)`
`=sum_(n=0)^oo1/2^n-sum_(n=0)^oo1/3^n`
`=(1/2^0+1/2^1+1/2^2+.......+1/2^oo)-(1/3^0+1/3^1+1/3^2+......+1/3^oo)`
`=(1+1/2+1/2^2+.......1/2^oo)-(1+1/3+1/3^2+........+1/3^oo)`
Now both of the above are geometric series,having first term 1 and common ratios `1/2,1/3` respectively,
Geometric series converges to the sum:
`sum_(n=0)^ooar^n=a/(1-r),0<|r|<1`
Using the above,
`=(1/(1-1/2))-(1/(1-1/3))`
`=(1/(1/2))-(1/(2/3))`
`=2-3/2`
`=1/2`
Comments
Post a Comment