`intcos^3(x)sin^4(x)dx`
Rewrite the integral as ,
`intcos^3(x)sin^4(x)dx=intcos^2(x)cos(x)sin^4(x)dx`
Now use the trigonometric identity:`cos^2(x)=1-sin^2(x)`
`=int(1-sin^2(x))cos(x)sin^4(x)dx`
Apply integral substitution: `u=sin(x)`
`du=cos(x)dx`
`=int(1-u^2)u^4du`
`=int(u^4-u^6)du`
Apply the sum and power rules,
`=intu^4du-intu^6du`
`=(u^(4+1)/(4+1))-(u^(6+1)/(6+1))`
`=u^5/5-u^7/7`
Substitute back u=sin(x) and add a constant C to the solution,
`=(sin^5(x))/5-(sin^7(x))/7+C`
Comments
Post a Comment