To evaluate the given equation `log_2(x-4)=6` , we may apply the logarithm property: `a^(log_a(x))=x` .
Raised both sides by base of `2` .
`2^(log_2(x-4))=2^6`
`x-4=64`
Add `4` on both sides to isolate x.
`x-4+4=64+4`
`x= 68`
Checking: Plug-in `x=68` on `log_2(x-4)=6` .
`log_2(68-4)=?6`
`log_2(64)=?6`
`log_2(2^6)=?6`
`6log_2(2)=?6`
`6*1=?6`
`6=6` TRUE
There is no extraneous solution. The `x=68` is a real solution for the given equation `log_2(x-4)=6` .
Comments
Post a Comment