`int e^(4x)cos(2x)dx`
To solve, apply integration by parts `int u dv = u*v - int vdu` .
In the given integral, the let the u and dv be:
`u = e^(4x) `
`dv = cos(2x)dx`
Then, take the derivative of u to get du. Also, take the integral of dv to get v.
`du = e^(4x)*4dx`
`du = 4e^(4x)dx`
`intdv = int cos(2x)dx`
`v = (sin(2x))/2`
Substituting them to the integration by parts formula yields
`int e^(4x)cos(2x)dx= e^(4x)*(sin(2x))/2 - int (sin(2x))/2 * 4e^(4x)dx`
`int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 - int 2e^(4x)sin(2x)dx`
For the integral at the right side, apply integration by parts again. Let the u and dv be:
`u = 2e^(4x)`
`dv = sin(2x)dx`
Take the derivative of u and take the integral of dv to get du and v, respectively.
`du = 2e^(4x)*4dx`
`du = 8e^(4x)dx`
`int dv = int sin(2x)dx`
`v = -cos(2x)/2`
Plug-in them to the formula of integration by parts.
`int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 - int 2e^(4x)sin(2x)dx`
`int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 - [2e^(4x)*(-(cos(2x))/2) - int (-(cos(2x))/2)*8e^(4x)dx]`
`int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 - [-e^(4x)cos(2x)+int 4e^(4x)cos(2x)dx]`
`int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 +e^(4x)cos(2x) - 4int e^(4x)cos(2x)dx`
Since the integrals at the left and right side of the equation are like terms, bring them together on one side.
`int e^(4x)cos(2x)dx+4int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 +e^(4x)cos(2x)`
The left side simplifies to
`5int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/2 +e^(4x)cos(2x)`
Isolating the integral, the equation becomes
`int e^(4x)cos(2x)dx= ((e^(4x)sin(2x))/2 +e^(4x)cos(2x)) * 1/5`
`int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/10 +(e^(4x)cos(2x))/5`
Since it is an indefinite integral, add C at the right side.
Therefore,
`int e^(4x)cos(2x)dx= (e^(4x)sin(2x))/10 +(e^(4x)cos(2x))/5+C ` .
Comments
Post a Comment