`(x+1)/(x+6)+1/x=(2x+1)/(x+6)`
LCD is `x(x+6)`
Multiply all the terms of the equation by LCD and simplify,
`x(x+6)((x+1)/(x+6))+x(x+6)(1/x)=x(x+6)((2x+1)/(x+6))`
`x(x+1)+(x+6)=x(2x+1)`
`x^2+x+x+6=2x^2+x`
`x^2+2x+6=2x^2+x`
`x^2+2x+6-2x^2-x=0`
`-x^2+x+6=0`
Factorize the above equation,
`-1(x^2-x-6)=0`
`(x^2+2x-3x-6)=0`
`(x(x+2)-3(x+2))=0`
`(x+2)(x-3)=0`
use the zero product property,
`x+2=0` or `x-3=0`
`x=-2` or `x=3`
Let's check the solutions by plugging them in the original equation,
For x=-2,
`(-2+1)/(-2+6)+1/(-2)=((2(-2)+1))/(-2+6)`
`(-1)/4-1/2=(-3)/4`
`-3/4=-3/4`
It's true.
For x=3,
`(3+1)/(3+6)+1/3=(2(3)+1)/(3+6)`
`4/9+1/3=7/9`
`7/9=7/9`
It's true.
So, the solutions of the equation are 3 and -2.
Comments
Post a Comment