`int-1/sqrt(1-(4t+1)^2)dt`
Take the constant out,
`=-1int1/sqrt(1-(4t+1)^2)dt`
Now apply integral substitution: `u=(4t+1)`
`=>du=4dt`
`=>dt=(du)/4`
`=-1int1/sqrt(1-u^2)(du)/4`
`=-1/4int1/sqrt(1-u^2)du`
Now use the common integral: `int1/sqrt(1-x^2)dx=arcsin(x)`
`=-1/4arcsin(u)`
Substitute back `u=(4t+1)` and add a constant C to the solution,
`=-1/4arcsin(4t+1)+C`
Comments
Post a Comment