Given to solve,
`int x^3e^(x^2)/(x^2+1)^2 dx`
let `t = x^2 => dt = 2x dx`
so,
`int x^3e^(x^2)/(x^2+1)^2 dx`
= `int t*x*e^(t)/(t+1)^2 dx`
=`int t*e^(t)/(t+1)^2 (xdx)`
`=int t*e^(t)/(t+1)^2 (1/2)dt`
let `u = t e^t => u'= e^t + te^t`
and `v'=(1/(t+1)^2)`
=> `v' = (t+1)^(-2) `
so `v=(t+1)^(-2+1) /(-2+1) = (t+1)^(-1) /(-1) `
=> `v= (-1)/(t+1)`
so , applying integraion by parts we get ,
`int uv' = uv - int u'v `
so ,
`int t*e^(t)/(t+1)^2 (1/2)dt`
= `(1/2)[(t e^t )((-1)/(t+1)) - int (e^t + te^t)((-1)/(t+1)) dt]`
= `(1/2)[(-(t e^t )/(t+1)) + int (e^t + te^t)((1)/(t+1)) dt]`
=`(1/2)[(-(t e^t )/(t+1)) + int (e^t)(1 + t)((1)/(t+1)) dt]`
=`(1/2)[(-(t e^t )/(t+1)) + int (e^t) dt]`
=`(1/2)[(-(t e^t )/(t+1)) + (e^t)] +c`
but ` t = x^2`
so,
`1/2[(-(t e^t )/(t+1)) + (e^t)] +c`
`=1/2[((-x^2 e^(x^2) )/(x^2+1)) + (e^(x^2))] +c`
`= 1/2(e^(x^2)(-x^2 + x^2+1)/(x^2+1)) + c`
`=1/2(e^(x^2)/(x^2+1)) + c`
Comments
Post a Comment