`g(x)=5/(2x-3), c=-3` Find a power series for the function, centered at c and determine the interval of convergence.
If x is a variable, then an infinite series of the form `sum_(n=0)^ooa_n(x-c)^n=a_0+a_1(x-c)+a_2(x-c)^2+......+a_n(x-c)^n+.....` is a power series centered at x=c, where c is a constant.
Given `g(x)=5/(2x-3) , c=-3`
Let's write g(x) in the form `a/(1-r)`
`g(x)=5/(2x-3)`
`=(5/2)/(x-3/2)`
`=(5/2)/(x+3-3/2-3)`
`=(5/2)/(x+3-9/2)`
`=(5/2)/(-9/2(1-2/9(x+3)))`
`=((5/2)(-2/9))/(1-2/9(x+3))`
`=(-5/9)/(1-2/9(x+3))`
So a=`-5/9` and r=`2/9(x+3)`
So, the power series for g(x) is `sum_(n=0)^ooar^n`
`=sum_(n=0)^oo(-5/9)(2/9(x+3))^n`
`=-5sum_(n=0)^oo(2^n(x+3)^n)/9^(n+1)`
This power series is a geometric series and it converges if `|r|<1`
`|2/9(x+3)|<1`
`-1<2/9(x+3)<1`
`-9<(2x+6)<9`
`-9-6<2x<9-6`
`-15<2x<3`
`-15/2<x<3/2`
Interval of convergence is `(-15/2,3/2)`
Comments
Post a Comment