Given` (x+y)dx - xdy= 0`
=>` (x+y) - xdy/dx= 0`
=>` x+y-xy'=0`
=>` x+y=xy'`
=> `1+y/x=y'`
=> `y' -y/x=1`
when the first order linear ordinary differential equation has the form of
`y'+p(x)y=q(x)`
then the general solution is ,
`y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx)`
so,
` y' -y/x=1--------(1)`
`y'+p(x)y=q(x)---------(2)`
on comparing both we get,
`p(x) = -1/x and q(x)=1`
so on solving with the above general solution we get:
y(x)=`((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx`
=`(int e^(int (-1/x) dx) *(1) dx +c)/e^(int (-1/x) dx)`
first we shall solve
`e^(int (-1/x) dx)=e^(-ln(x))=1/x`
so
proceeding further, we get
y(x) =`(int e^(int (-1/x) dx) *(1) dx +c)/e^(int -1/x dx)`
=`(int (1/x) *(1) dx +c)/(1/x)`
=`(ln(x) +c)/(1/x ) = x(ln(x)+c)`
So , `y(x) = x(ln(x)+c)`
Comments
Post a Comment