`sum_(n=0)^oo (-1)^n x^n/5^n`
To determine the radius of convergence of a series `sum` `a_n` , apply the Root Test.
`L = lim_(n->oo) root(n)(|a_n|)`
`L=lim_(n->oo) root(n)(|(-1)^nx^n/5^n|)`
`L = lim_(n->oo) root (n) (| (-1)*x/5|^n)`
`L= lim_(n->oo)|(-1)*x/5|`
`L = |(-1)*x/5|`
`L=|-1/5|*|x|`
`L=1/5|x|`
Take note that in Root Test, the series converges when L < 1.
`Llt1`
`1/5|x|lt1`
`|x|lt5`
Therefore, the radius of convergence of the given series is R=5.
Comments
Post a Comment