Given to solve
`int x(sqrt(x-5))dx`
let `u = x-5`
`du = dx ` and `x= u+5`
so ,
`int x(sqrt(x-5))dx = int (u+5)u^(1/2) du`
=` int [u^(3/2)+5u^(1/2)] du`
= `int u^(3/2) du +int 5u^(1/2) du`
= `(u^((3/2)+1))/((3/2)+1) +5 int u^(1/2) du`
= `u^(5/2)/(5/2) +5 (u^((1/2)+1))/((1/2)+1) + C`
=`u^(5/2)/(5/2) +5 u^(3/2)/(3/2) + C`
=(`2/5)u^(5/2) + (10/3)u^(3/2) + C`
=`2/5(x-5)^(5/2) + 10/3(x-5)^(3/2) + C`
Comments
Post a Comment