`sum_(n=1)^oo (2root(n)(n)+1)^n` Use the Root Test to determine the convergence or divergence of the series.
Applying Root test on a series `sum a_n` , we determine the limit as:
`lim_(n-gtoo) root(n)(|a_n|)= L`
or
`lim_(n-gtoo) |a_n|^(1/n)= L`
Then, we follow the conditions:
a) `Llt1` then the series is absolutely convergent.
b) `Lgt1` then the series is divergent.
c) `L=1` or does not exist then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.
For the given series `sum_(n=1)^oo(2root(n)(n)+1)^n` , we have `a_n =(2root(n)(n)+1)^n` .
Applying the Root test, we set-up the limit as:
`lim_(n-gtoo) |(2root(n)(n)+1)^n|^(1/n) =lim_(n-gtoo) ((2root(n)(n)+1)^n)^(1/n)`
Apply the Law of Exponents: `(x^n)^m= x^(n*m)` .
`lim_(n-gtoo) ((2root(n)(n)+1)^n)^(1/n) =lim_(n-gtoo) (2root(n)(n)+1)^(n*(1/n))`
`=lim_(n-gtoo) (2root(n)(n)+1)^(n/n )`
`=lim_(n-gtoo) (2root(n)(n)+1)^1`
`=lim_(n-gtoo) (2root(n)(n)+1)`
Evaluate the limit.
`lim_(n-gtoo) (2root(n)(n)+1) =lim_(n-gtoo) 2root(n)(n)+lim_(n-gtoo)1`
`=2lim_(n-gtoo) root(n)(n)+lim_(n-gtoo)1`
`= 2 * 1 + 1`
`=2 +1`
`=3`
Note: `lim_(n-gtoo) 1 =1` and `lim_(n-gtoo) root(n)(n) =lim_(n-gtoo) n^(1/n) =1` .
The limit value `L =3` satisfies the condition: `Lgt1` .
Conclusion: The series `sum_(n=1)^oo(2root(n)(n)+1)^n` is divergent .
Comments
Post a Comment