`lim_(x->1) ln(x^3)/(x^2-1)`
To solve, plug-in x = 1.
`lim_(x->1) ln(x^3)/(x^2-1) = ln(1^3)/(1^2-1) = 0/0`
Since the result is indeterminate, to determine the limit of the function as x approaches 1, apply L'Hopital's Rule. To do so, take the derivative of the numerator and denominator.
`lim_(x->1) ln(x^3)/(x^2-1) = lim_(x->1) ((ln(x^3))')/((x^2-1)') = lim_(x->1) (1/x^3*3x^2)/(2x) =lim_(x->1)(3/x)/(2x) = lim_(x->1)3/(2x^2)`
And, plug-in x = 1.
`= 3/(2*1) = 3/2`
Therefore, `lim_(x->1) ln(x^3)/(x^2-1)=3/2` .
Comments
Post a Comment