Given to solve,
`int xe^(2x)/(2x+1)^2 dx`
let `u= xe^(2x) so , u' = e^(2x) +2xe^(2x)`
and
`v'= (1/((2x+1)^2)) = (2x+1)^(-2)`
`v= int (2x+1)^(-2) dx`
let `t= 2x+1 => dt = 2dx `
so `v' =t^(-2)`
=> `v= int t^(-2) dt /2`
= `t^(-2+1) /(-2+1) *(1/2)`
so v =` (2x+1)^(-2+1) /(-2+1) * (1/2)`
= `-1/(2(2x+1))`
by applying the integration by parts we get ,
`int uv' = uv - int u'v`
so,
`int xe^(2x)/(2x+1)^2 dx `
=` (xe^(2x))(-1/(2(2x+1))) - int (e^(2x) +2xe^(2x))(-1/(2(2x+1))) dx`
= `(xe^(2x))(-1/(2(2x+1))) + int ((e^(2x) +2xe^(2x))/(2(2x+1))) dx`
=`(xe^(2x))(-1/(2(2x+1))) +(1/2) int (e^(2x) (1+2x)/((2x+1))) dx`
=`(xe^(2x))(-1/(2(2x+1))) +(1/2) int (e^(2x)) dx`
as we know `int e^(ax) dx = e^(ax) /a`
so,
=`-(xe^(2x))(1/(2(2x+1))) +(1/2) (e^(2x))/2 `
= `(-xe^(2x))/(2(2x+1)) +e^(2x)/4 +c`
Comments
Post a Comment