`sum_(n=1)^oo4/(n(n+2))`
Using partial fractions we can write the n'th term of the series as,
`a_n=4(1/(2n)-1/(2(n+2)))`
`a_n=(2/n-2/(n+2))`
Now the n'th partial sum is,
`S_n=(2/1-2/(1+2))+(2/2-2/(2+2))+(2/3-2/(3+2))+(2/4-2/(4+2))+(2/5-2/(5+2))+............`
`S_n=(2-2/3)+(1-1/2)+(2/3-2/5)+(1/2-1/3)+(2/5-2/7)+......`
`S_n=(2+1)` all other terms cancel out
`S_n=3`
`sum_(n=1)^oo4/(n(n+2))=3`
Comments
Post a Comment