Given to solve
`int 1/(cos(theta) - 1) d theta`
For convenience, let `theta = x`
=>
`int 1/(cosx - 1) dx`
let `u = tan(x/2) => dx = (2/(1+u^2)) du`
so ,
`cos(x) = (1-u^2)/(1+u^2)` (See my reply below for an explanation)
so,
`int 1/(cos(x) - 1) dx`
= `int 1/((1-u^2)/(1+u^2) - 1) (2/(1+u^2)) du`
= `int 1/(((1-u^2)-(1+u^2))/(1+u^2) ) (2/(1+u^2)) du`
=`int (1+u^2)/(((1-u^2)-(1+u^2)) ) (2/(1+u^2)) du`
=`int (2)/(((1-u^2)-(1+u^2)) ) du`
=`int (2)/(((1-u^2)-1-u^2)) ) du`
= `int (2)/(-2u^2) du`
=` -int(1/u^2) du`
= `-[u^(-2+1)/(-2+1)]`
= `u^-1`
= `1/u`
= `1/tan(x/2) `
= `cot(x/2)+c`
But `x= theta`
so,
`int 1/(cos(theta) - 1) d theta = cot(theta/2)+c`
Comments
Post a Comment