Integrate `int(x^3+4)/(x^2+4)dx`
Rewrite the given function using long division.
`int[x+(-4x+4)/(x^2+4)]dx`
`=intxdx-int(4x)/(x^2+4)dx+int4/(x^2+4)dx`
Integrate the first integral using the pattern `intx^n=x^(n+1)/n+C`
`intx=x^2/2+C`
Integrate the second integral using u-substitution.
let `u=x^2+4`
`(du)/dx=2x`
`dx=(du)/(2x)`
`-int(4x)/(x^2+4)dx`
`=-4intx/u*(du)/(2x)`
` ` `=-2ln|x^2+4|+C`
`=-2ln(x^2+4)+C`
Integrate the third integral using the pattern
`int(dx)/(x^2+a^2)=(1/a)tan^-1(x/a)+C`
`int4/(x^2+4)dx=(4)(1/2)tan^-1(x/2)+C=2tan^-1(x/2)+C`
The final answer is:
`1/2x^2-2ln(x^2+4)+2tan^-1(x/2)+C`
Comments
Post a Comment