`int ( sin (theta))/(3-2cos(theta)) d theta`
To solve, apply u-substitution method.
`u = 3-2cos (theta)`
`du = -2*(-sin (theta)) d theta`
`du = 2sin (theta) d theta`
`1/2du= sin (theta) d theta`
Expressing the integral in terms of u, it becomes
`= int 1/(3-2cos (theta)) * sin (theta) d theta`
`=int 1/u * 1/2 du`
`=1/2 int 1/u du`
Then, apply the integral formula `int 1/x dx = ln|x| + C` .
`= 1/2 ln|u| + C`
And substitute back `u = 3-2cos(theta)` .
`=1/2ln|3-2cos(theta)| + C`
Therefore, `int ( sin (theta))/(3-2cos(theta)) d theta = 1/2 ln|3-2cos(theta)| + C` .
Comments
Post a Comment