`int(8x)/(x^3+x^2-x-1)dx`
`(8x)/(x^3+x^2-x-1)=(8x)/((x^3+x^2)-1(x+1))`
`=(8x)/((x^2(x+1)-1(x+1)))`
`=(8x)/((x+1)(x^2-1))`
`=(8x)/((x+1)(x+1)(x-1))`
`=(8x)/((x-1)(x+1)^2)`
Now let's form the partial fraction template,
`(8x)/((x-1)(x+1)^2)=A/(x-1)+B/(x+1)+C/(x+1)^2`
Multiply the equation by the denominator,
`8x=A(x+1)^2+B(x-1)(x+1)+C(x-1)`
`8x=A(x^2+2x+1)+B(x^2-1)+C(x-1)`
`8x=Ax^2+2Ax+A+Bx^2-B+Cx-C`
`8x=(A+B)x^2+(2A+C)x+A-B-C`
Comparing the coefficients of the like terms,
`A+B=0` -----------------(1)
`2A+C=8` -----------------(2)
`A-B-C=0` ---------------(3)
From equation 1,
`B=-A`
Substitute B in equation 3,
`A-(-A)-C=0`
`2A-C=0` ---------------(4)
Now add equations 2 and 4,
`4A=8`
`A=8/4`
`A=2`
`B=-A=-2`
Plug in the value of A in equation 4,
`2(2)-C=0`
`C=4`
Plug in the values of A, B and C in the partial fraction template,
`(8x)/((x-1)(x+1)^2)=2/(x-1)+(-2)/(x+1)+4/(x+1)^2`
`int(8x)/(x^3+x^2-x-1)dx=int(2/(x-1)-2/(x+1)+4/(x+1)^2)dx`
Apply the sum rule,
`=int2/(x-1)dx-int2/(x+1)dx+int4/(x+1)^2dx`
Take the constant out,
`=2int1/(x-1)dx-2int1/(x+1)dx+4int1/(x+1)^2dx`
Now let's evaluate the above three integrals separately,
`int1/(x-1)dx`
Apply integral substitution:`u=x-1`
`du=1dx`
`=int1/udu`
use the common integral `int1/xdx=ln|x|`
`=ln|u|`
Substitute back `u=x-1`
`=ln|x-1|`
Now let's evaluate second integral,
`int1/(x+1)dx`
Apply integral substitution: `u=x+1`
`du=dx`
`=int1/udu`
`=ln|u|`
Substitute back `u=x+1`
`=ln|x+1|`
Now evaluate the third integral,
`int1/(x+1)^2dx`
apply integral substitution: `u=(x+1)`
`du=dx`
`=int1/u^2du`
`=intu^(-2)du`
apply power rule,
`=u^(-2+1)/(-2+1)`
`=-1/u`
Substitute back `u=x+1`
`=-1/(x+1)`
`int(8x)/(x^3+x^2-x-1)dx=2ln|x-1|-2ln|x+1|+4(-1/(x+1))`
Simplify and add a constant C to the solution,
`=2ln|x-1|-2ln|x+1|-4/(x+1)+c`
Comments
Post a Comment