The integral `int sin^3(3*x) dx` has to be determined.
`int sin^3(3*x) dx`
Let `y=3x`
`dy/dx = 3`
The given integral can be written as:
`1/3int sin^3 y dy`
= `1/3int sin y * sin^2 y dy`
= `1/3int sin y * (1 - cos^2 y) dy`
Let `z = cos` y, `dz/dy = -sin y`
=> `-(1/3)*int (1 - z^2) dz `
=> `(-1/3)*(z - z^3/3)`
As `z = cosy`
=> `-1/3(cos y - (cos^3y)/3)`
And `y = 3x`
=> `-1/3(cos 3x - (cos^3(3x))/3)`
The integral `int sin^3(3*x) dx = -1/3(cos 3x - (cos^3(3x))/3) + C`
Comments
Post a Comment