A mole is defined as the number equal to the quantity of carbon atoms in exactly 12 grams of pure 12^C. This number of carbon atoms has been empirically determined to be 6.022 x 10^23. So a mole, or Avogadro's number, can be thought of as a quantity -- very much like 1 dozen eggs is 12 eggs, 1 mole of eggs is 6.022 x 10^23 eggs.
The mass in grams of one mole of any element (6 x 10^23 atoms) is defined as the molar mass (M) of that element. An element's molar mass is expressed as the quantity in grams equal to its atomic weight. So the molar mass (Mr) of sodium (Na) is equal to its atomic weight (amu) in grams which is 22.9 g; 1 mole of Na = 22.9 g = 6 x 10^23 atoms. For compounds, the masses of the individual atoms are combined to yield the molar mass of the compound. As an example:
CH4 (methane) has 1 carbon atom (12.1 atomic weight), and 4 hydrogen atoms (1.01 atomic weight). The molar mass of CH4 (the quantity of 1 mole of methane) is equal to 1 x 12.1 g (carbon component) + 4 x 1.01 g (hydrogen component) = 16.1 g/mole.
If you had 50 g of CH4, then using the equation:
g x 1 mol/Mr = moles
50 g x 1 mole/16.1 g = 3.1 moles
notice grams cancel in this equation
Molarity (M) is a measure of concentration and is defined as the number of moles of solute (dissolved) per liter of solution. A 1 molar solution of Na (1 M) would have 22.9 g of Na and enough solute to bring the volume to 1 liter. If 0.435 g KMnO4 (potassium permanganate) is dissolved in enough water to give 250 mL, what is the concentration (M)?
0.435 g KMnO4 x 1 mol KMnO4/158.0 g KMnO4 [Mr] = 0.00275 mol KMnO4
0.00275 mol KMnO4 /0.250 L = 0.0110 M
The ideal gas law is defined as
pressure(P) x volume (V) = n (moles) x R (gas constant) x temperature (T)
The gas constant, R, is determined based on the units.
Rearranging the equation and solving for volume gives ==
V = nRT/P == for n = 1 mole; T = 298.2 °K (room temperature); R = 0.08206 L•atm/mol•K → V = (1 mol x 0.08206 L•atm/mol• K x 298.2 K)/1 atm = 24.47 L = volume 1 mole of gas occupies at room temperature
solving the equation for n (moles) gives ==
n = PV/RT, if pressure and temperature are constant, then the number of moles is dependent on the volume, which at room temperature is a multiple of 24. As an example, 50 L of a gas at room temperature and 1 atmosphere pressure would have 50L/24 = 2.043 moles of gas.
Hope that helps.
Comments
Post a Comment