Given to solve,
`lim_(x->0) (sqrt(25-x^2)-5)/x`
upon Rationalizing numerator we get
=` lim_(x->0) ((sqrt(25-x^2)-5)/x) ((sqrt(25-x^2)+5)/(sqrt(25-x^2)+5))`
=`lim_(x->0) (((sqrt(25-x^2)^2-5^2)/(x(sqrt(25-x^2)+5)))`
=`lim_(x->0) ((((25-x^2)-25)/(x(sqrt(25-x^2)+5)))`
=`lim_(x->0) ((-x^2)/(x(sqrt(25-x^2)+5)))`
=`lim_(x->0) ((-x)/((sqrt(25-x^2)+5)))`
Now plugging the value of `x =0 ` we get
`((-x)/((sqrt(25-x^2)+5)))`
= `((-0)/((sqrt(25-0^2)+5)))`
=`0`
Comments
Post a Comment