`inttan^3(2t)sec^3(2t)dt`
Apply integral substitution: `u=2t`
`du=2dt`
`inttan^3(2t)sec^3(2t)dt=inttan^3(u)sec^3(u)(du)/2`
Take the constant out,
`=1/2inttan^3(u)sec^3(u)du`
Rewrite the integral as,
`=1/2intsec^3(u)tan^2(u)tan(u)du`
Now use the trigonometric identity:`tan^2(x)=sec^2(x)-1`
`=1/2intsec^3(u)(sec^2(u)-1)tan(u)du`
Again apply the integral substitution:`v=sec(u)`
`dv=sec(u)tan(u)du`
`=1/2intv^2(v^2-1)dv`
`=1/2int(v^4-v^2)dv`
Apply the sum and power rule,
`=1/2(intv^4dv-intv^2dv)`
`=1/2{(v^(4+1)/(4+1))-(v^(2+1)/(2+1))}`
`=1/2(v^5/5-v^3/3)`
Substitute back `v=sec(u)` and `u=2t`, and add a constant C to the solution,
`=1/2((sec^5(2t))/5-(sec^3(2t))/3)+C`
Comments
Post a Comment