Given to solve,
`lim_(x->0) x/arctan(2x)`
as `x->0` then the `x/arctan(2x) =0/0` form
so upon applying the L 'Hopital rule we get the solution as follows,
as for the general equation it is as follows
`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get the solution with the below form.
`lim_(x->a) (f'(x))/(g'(x))`
so , now evaluating
`lim_(x->0) x/arctan(2x)`
=`lim_(x->0) (x')/((arctan(2x))')`
= `lim_(x->0) 1/((arctan(2x))')`
First let us compute the
`(arctan(2x))' `
let `u= 2x`
=>
so,
`(arctan(2x))'= d/dx (arctan(2x)) `
=`d/(du) (arctan(u)) d/dx (u)` [as `d/dx f(u) = d/(du) f(u) * d/dx (u)]`
= `(1/(u^2+1) d/dx (2x)`
=`(1/(u^2+1) )(2)`
=`(2/(u^2+1))` but u= `2x` ,so
=`2/((2x)^2+1)`
= `(2/(4(x)^2+1)) `
now coming back to the limits , we have
`lim_(x->0) 1/(arctan(2x))'`
= `lim_(x->0) 1/(2/(4x^2+1))`
as x->0 , we get
=`1/((2/(4(0)^2+1)) )`
=` 1/2`
so , we can state that ,
`lim_(x->0) x/arctan(2x) = 1/2`
Comments
Post a Comment