Given ,
`int tan^(-1) (x)dx`
By Applying the integration by parts we get this solution
so,
let` u=tan^(-1) (x) =>
`u'= (tan^(-1) (x) )'=1/(x^2+1)`
and `v'=1 =>v =x`
now by Integration by parts ,
`int uv' dx= uv-int u'v dx`
so , now
`int tan^(-1) (x)dx`
= `xtan^(-1) (x) - int 1/(x^2+1)*x dx`
=` xtan^(-1) (x) - int x/(x^2+1)dx`
=` xtan^(-1) (x) - 1/2int 2x/(x^2+1)dx`
let `q=x^2+1`
=> `dq = 2x dx`
so ,
`1/2int 2x/(x^2+1)dx = 1/2int 1/q dq = 1/2ln(q)+C`
`=1/2ln(x^2+1)+c`
so, now
`int tan^(-1) (x)dx`= ` xtan^(-1) (x) -1/2ln(x^2+1)+C`
Comments
Post a Comment