`int tanx ln(cosx)dx`
To solve, apply u-substitution method.
`u=ln(cosx)`
`du=1/(cosx)*(-sinx)dx`
`du =-tanxdx`
`-du=tanxdx`
Expressing the integral in terms of u variable, it becomes
`= int ln(cosx) * tanxdx`
`= int u * (-du)`
`=-int udu`
To take the integral of this, apply the formula `int x^n dx =x^(n+1)/(n+1)+C` .
`= -u^2/2 + C`
And, substitute back u = ln(cosx).
`= -(lncosx)^2/2 + C`
Therefore, `int tanxln(cosx)dx = -(lncosx)^2/2+C` .
Comments
Post a Comment