For the given integral problem: `int sqrt(x)arctan(x^(3/2))dx` , we can evaluate this applying indefinite integral formula: `int f(x) dx = F(x) +C` .
where:
`f(x)` as the integrand function
`F(x)` as the antiderivative of `f(x)`
`C` as the constant of integration.
From the basic indefinite integration table, the problem resembles one of the formula for integral of inverse trigonometric function:
`int arctan(u) du = u * arctan(u)- ln(u^2+1)/2+C`
For easier comparison, we may apply u-substitution by letting:
`u =x^(3/2 )`
To determine the derivative of u, we apply the Power rule for derivative:`d/(dx) x^n = n*x^(n-1) dx`.
`du =d/(dx) x^(3/2)`
`= (3/2) *x^(3/2-1) * 1 dx`
`= 3/2x^(1/2) dx`
` =3/2sqrt(x) dx`
Rearrange `du =3/2sqrt(x) dx` into `(2du)/3 = sqrt(x) dx` .
Plug-in the values `u = x^3/2` and `(2du)/3 = sqrt(x) dx` , we get:
`int sqrt(x)arctan(x^(3/2))dx =int arctan(x^(3/2))*sqrt(x)dx`
` = int arctan(u) *(2du)/3`
Apply the basic integration property: `int c*f(x) dx = c int f(x) dx` .
`int arctan(u) *(2du)/3 =2/3int arctan(u)du.`
Applying the aforementioned formula for inverse trigonometric function, we get:
`2/3int arctan(u)du=(2/3) *[u * arctan(u)- ln(u^2+1)/2]+C`
`=(2u * arctan(u))/3- (2ln(u^2+1))/6+C`
`=(2u * arctan(u))/3- ln(u^2+1)/3+C`
Plug-in `u =x^(3/2)` on `(2u * arctan(u))/3- ln(u^2+1)/3+C` , we get the indefinite integral as:
`int sqrt(x)arctan(x^(3/2))dx =(2x^(3/2) * arctan(x^(3/2)))/3- ln((x^(3/2))^2+1)/3+C`
`=(2x^(3/2) * arctan(x^(3/2)))/3- ln(x^3+1)/3+C`
or `(2xsqrt(x) arctan(xsqrt(x)))/3- ln(x^3+1)/3+C`
Note:` x^(3/2) = xsqrt(x)`
Comments
Post a Comment