To simplify the given complex fraction `((3-2x)/x^3)/(2/x^2-1/(x^3+x^2))` , we may look for the LCD or least common denominator.
The denominators are `x^3` , `x^2`, and`x^3+x^2` .
Note: The factored form of `x^3+x^2 = x^2(x+1)`.
LCD is the same as getting LCM from the denominators.
We get the product of each factor with highest exponent value,
`LCD=x^3*(x+1)` .
Multiply each term by the `LCD=x^3*(x+1).`
`((3-2x)/x^3*x^3*(x+1))/(2/x^2*x^3*(x+1)-1/(x^3+x^2)x^3*(x+1)) `
`((3-2x)/x^3*x^3*(x+1))/(2/x^2*x^3*(x+1)-1/(x^2(x+1))x^3*(x+1)) `
`((3-2x)(x+1))/(2x*(x+1)-1*x)`
`(3x+3-2x^2-2x)/((2x^2+2x)-x)`
`(-2x^2+3x-2x+3)/(2x^2+2x-x)`
`(-2x^2+x+3)/(2x^2+x)`
Final answer:
`((3-2x)/x^3)/(2/x^2-1/(x^3+x^2))=(-2x^2+x+3)/(2x^2+x)`
Comments
Post a Comment