`sum_(n=1)^oo (4x)^n/n^2`
To find radius of convergence of a series `sum` `a_n` , apply the Ratio Test.
`L = lim_(n->oo) |a_(n+1)/a_n|`
`L=lim_(n->oo) | (4x)^(n+1)/(n+1)^2 * n^2/(4x)^n|`
`L= lim_(n->oo) |(4xn^2)/(n+1)^2|`
`L = |4x| lim_(n->oo) |n^2/(n+1)^2|`
`L = |4x| * 1`
`L = |4x|`
`L =4|x|`
Take note that in Ratio Test, the series converges when L < 1.
`L < 1`
`4|x| lt 1`
`|x|lt1/4`
Therefore, the radius of convergence of the given series is `R = 1/4` .
Comments
Post a Comment