To solve the equation `log_5(5x+9)=log_5(6x)` , we apply logarithm property: `a^(log_a(x))=x` .
Raise both sides by base of `5` .
`5^( log_5(5x+9))=5^(log_5(6x))`
`5x+9=6x`
Subtract `5x` from both sides of the equation
`5x+9-5x=6x-5x`
`9=x`
or
`x=9`
Checking: Plug-in `x=9` on `log_5(5x+9)=log_5(6x)` .
`log_5(5*9+9)=?log_5(6*9)`
`log_5(45+9)=?log_5(54)`
`log_5(54)=log_5(54)` TRUE
Thus, the `x=9` is the real exact solution of the equation . `log_5(5x+9)=log_5(6x)`. There is no extraneous solution.
Comments
Post a Comment