To solve the given equation `7^(6x)=12` , we may take "`ln` " on both sides of the equation.
`ln(7^(6x))=ln(12)`
Apply natural logarithm property: `n*ln (x)=ln (x^n)` .
`6x*ln(7)=ln(12)`
Divide both sides by `6ln(7)` .
`(6x*ln(7))/(6ln(7))=(ln(12))/(6ln(7))`
`x=(ln(12))/(6ln(7))`
`x=(ln(12))/(ln(117649)) ` or `0.213` (approximated value)
Checking: Plug-in `x=0.213` on `7^(6x)=12` .
`7^(6*0.213)=?12`
`7^(1.278)=?12`
`12.02~~12` TRUE
Thus, the `x=(ln(12))/(6ln(7))` is the real exact solution of the equation `7^(6x)=12` .
Comments
Post a Comment