`int (sin sqrt theta)/sqrt theta d theta`
To solve, apply u-substitution method.
`u=sqrt theta`
`u= theta ^(1/2)`
`du = 1/2 theta^(-1/2) d theta`
`du = 1/(2theta^(1/2))d theta`
`du =1/(2 sqrt theta) d theta`
`2du =1/sqrt theta d theta`
Expressing the integral in terms of u, it becomes:
`= int sin (sqrt theta) * 1/sqrt theta d theta`
`= int sin (u) * 2du`
`= 2 int sin (u) du`
Then, apply the integral formula `int sin (x) dx = -cos(x) + C` .
`= 2*(-cos (u)) + C`
`= -2cos(u) + C`
And, substitute back `u = sqrt theta` .
`= -2cos( sqrt theta) + C`
Therefore, `int (sin sqrt theta)/sqrt theta d theta= -2cos( sqrt theta) + C` .
Comments
Post a Comment