Skip to main content

Two astronauts find themselves floating beside International Space Station after their spacesuit thrusters are damaged by a solar flare and...

The overall theme for this question is that in the absence of any external influences, total momentum (as well as total internal energy) is always conserved.  The basic principle behind getting both astronauts back to the ISS is for the first astronaut (5 yards away from the ISS) to rescue the second astronaut (10 yards from the ISS) before they both can return to the ISS together.   


A) If we consider the system of reference to be the ISS, Astronaut 1, and Astronaut 2, then both astronauts posses 0 momentum as they are both floating alongside the ISS, neither moving towards or away from it in any direction.  Astronaut 1 should take one of the tools from their belt and throw it in the opposite direction as Astronaut 2.  This will impart momentum (inertia in motion) to the tool as it will begin moving towards the ISS.  However, according to Newton's 3rd Law, Astronaut 1 will now possess that same amount of momentum, but in the opposite direction (towards Astronaut 2).  In short, this is like an elastic collision, though the total momentum before was 0.  According to the momentum equation, the larger mass of the astronaut will result in a much smaller velocity than the tool of choice would have received.  Astronaut 1, depending on the availability of tools, can continue this process until they reach Astronaut 2.  Once they collide, Astronaut 2 will need to catch Astronaut 1 and hold on tight, resulting in an inelastic collision.  The result will be Astronaut 1 slowing down as Astronaut 2 will have, in essence, increased his/her mass.  The original process of discarding tools should be repeated, though this time opposite the ISS.  As each tool is thrown away from the station, the astronaut pair will slow down, stop, and eventually achieve a velocity in the direction of the ISS.


B)  The conservation of energy in this action is larger than simply throwing the hammer.  The Law of Conservation of Energy states that the total internal energy of a system remains constant, but it can be transferred between objects and transformed to different types of energy.  The astronaut has an amount of potential energy stored inside of their bodies.  The action of throwing the hammer will utilize that chemical potential energy and convert it into kinetic energy, enabling the astronaut to move.  That motion will then cause the hammer to move, imparting kinetic energy to the hammer.  Overall, the total energy of the astronaut and the hammer remains constant, but the total energy of the astronaut decreases while the energy of the hammer increases.  Potential energy of the astronaut is converted to kinetic energy and then transferred as kinetic energy to the hammer.


C) When bodies rotate, inertia in motion is referred to as angular momentum.  Just as in a linear system, angular momentum is also conserved during encounters.  When the astronaut throws the hammer with a clockwise rotation, he imparts angular momentum on the hammer.  Before he threw it, the total rotational momentum of the hammer and he combined was 0.  After he throws it, the total rotational momentum will still be 0.  As a result, he will be rotating in the opposite direction as the hammer, but with a much slower rotation due to a larger mass.

Comments

Popular posts from this blog

Is there a word/phrase for "unperformant"?

As a software engineer, I need to sometimes describe a piece of code as something that lacks performance or was not written with performance in mind. Example: This kind of coding style leads to unmaintainable and unperformant code. Based on my Google searches, this isn't a real word. What is the correct way to describe this? EDIT My usage of "performance" here is in regard to speed and efficiency. For example, the better the performance of code the faster the application runs. My question and example target the negative definition, which is in reference to preventing inefficient coding practices. Answer This kind of coding style leads to unmaintainable and unperformant code. In my opinion, reads more easily as: This coding style leads to unmaintainable and poorly performing code. The key to well-written documentation and reports lies in ease of understanding. Adding poorly understood words such as performant decreases that ease. In addressing the use of such a poorly ...

A man has a garden measuring 84 meters by 56 meters. He divides it into the minimum number of square plots. What is the length of the square plots?

We wish to divide this man's garden into the minimum number of square plots possible. A square has all four sides with the same length.Our garden is a rectangle, so the answer is clearly not 1 square plot. If we choose the wrong length for our squares, we may end up with missing holes or we may not be able to fit our squares inside the garden. So we have 84 meters in one direction and 56 meters in the other direction. When we start dividing the garden in square plots, we are "filling" those lengths in their respective directions. At each direction, there must be an integer number of squares (otherwise, we get holes or we leave the garden), so that all the square plots fill up the garden nicely. Thus, our job here is to find the greatest common divisor of 84 and 56. For this, we prime factor both of them: `56 = 2*2*2*7` `84 = 2*2*3*7` We can see that the prime factors and multiplicities in common are `2*2*7 = 28` . This is the desired length of the square plots. If you wi...

What warning does Chuchundra issue to Rikki?

Chuchundra, the sniveling, fearful muskrat who creeps around walls because he is too terrified to go into the center of a room, meets Rikki in the middle of the night. He insults Rikki by begging him not to kill him. He then insults him by suggesting that Nag might mistake Chuchundra for Rikki. He says, "Those who kill snakes get killed by snakes."  He issues this warning to Rikki not to help keep Rikki safe but as a way of explaining why Rikki's presence gives him, Chuchundra, more reason to fear.  Chuchundra starts to tell Rikki what Chua the rat told him--but breaks it off when he realizes he might be overheard by Nag. He says, "Nag is everywhere, Rikki-Tikki." Rikki threatens to bite Chuchundra to get him to talk. Even then, Chuchundra won't overtly reveal any information. But he does say, "Can't you hear, Rikki-Tikki?" This is enough of a clue for the clever mongoose. He listens carefully and can just make out the "faintest scratch-s...